Correlation and Linear Regression

Ilir Agalliu MD, Sc.D Associate Professor Dept. of Epidemiology & Population Health Albert Einstein College of Medicine

Feb 14th, 2024

Outline

- Chi-Square Test (from last session)
- Correlations
- Simple Linear Regression
 - The Model
 - The Method of Least Squares
 - Evaluation of the Model
- Multivariate Linear Regression
- Examples

Statistical Tests - Categorical Variables Chi-square (x²) test

- Compares the proportion of individuals with a certain characteristic or exposure among two or more groups
- Generally used for 2 x 2 or n x n (contingency) tables
- Each cell is mutually exclusive
- Can be used for two or more independent groups
- $H_0: p1 = p2$
- H_A : p1 \neq p2 (two-sided)
- p denotes proportion

Chi-Square Test

Assume we wish to compare proportions of two birth weight groups by maternal hypertension during pregnancy

I	birtri weight gr	oup History of Hypertension	i ci osstabula	uon	
			History of hy	pertension	
			No	Yes	Total
Birth weight group	>2500 gm	Count	125	5	130
		% within Birth weight group	96.2%	3.8%	100.0%
		% within History of hypertension	70.6%	41.7%	68.8%
	< 2500 gm	Count	52	7	59
		% within Birth weight group	88.1%	11.9%	100.0%
		% within History of hypertension	29.4%	58.3%	31.2%
Total		Count	177	12	189
		% within Birth weight group	93.7%	6.3%	100.0%
		% within History of hypertension	100.0%	100.0%	100.0%

Distances in the second stilling on a filling and a second strain filling and the second strain stra

 $X^{2}_{(df)} = \Sigma (Obs - Exp)^{2} / Exp$

Need to calculate expected values

Calculation of Expected Values

Hypertension

Birth-weight	No	Yes	Total
>2500	<u>(a+b)*(a+c)</u> T	<u>(a+b)*(b+d)</u> T	a+b
<2500	<u>(c+d)*(a+c)</u> T	<u>(b+d)*(c+d)</u> T	c+d
Total	a+c	b+d	Т

Expected a = ((a+b)*(a+c))/T

Chi-Square Test

Birth v	veig	ht group *	History of	hyperte	nsion C	rossta	abulation		
					Histor				
					No)	Yes		Total
Birth weight group	>2	500 gm	Count			125		5	130
			Expected	Count	1:	21.7	8.	3	130.0
	v ,	2500 gm	Count			52		7	59
			Expected	Count	ļ	55.3	3.	7	59.0
Total			Count		177		12		189
	Expected Count						12.0		189.0
			Chi-Squa	re Tests					
		Value	df	Asymp (2-si). Sig. ded)	Exac	t Sig. (2- ided)	E	xact Sig. (1- sided)
Pearson Chi-Square		4.388 ^a	1		.036				
Continuity Correction ^b		3.143	1		.076				
Likelihood Ratio		4.022	1	.045					
Fisher's Exact Test						.052		.042	
Linear-by-Linear Association		4.365	1		.037				
N of Valid Cases		189							

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 3.75.

b. Computed only for a 2x2 table

Chi-Square Test Can be used also for n x n tables

Birth weight group * Mothers race Crosstabulation									
			I	Mothers race					
			White	Black	Other	Total			
Birth weight group	>2500 gm	Count	73	15	42	130			
		Expected Count	66.0	17.9	46.1	130.0			
	< 2500 gm	Count	23	11	25	59			
		Expected Count	30.0	8.1	20.9	59.0			
Total		Count	96	26	67	189			
		Expected Count	96.0	26.0	67.0	189.0			

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.005 ^a	2	.082
Likelihood Ratio	5.010	2	.082
Linear-by-Linear Association	3.570	1	.059
N of Valid Cases	189		

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 8.12.

Correlation

- Shows the relationship between two continuous variables
- Identifies
 - Direction
 - Shape
 - Outliers
- Does NOT provide a quantitative estimate of their association

Correlation Analysis

Correlation is a measure of the statistical relationship between two variables

- PEARSONS: Normally distributed variables
- SPEARMAN's: Not-normally distributed variables
- Quantitative estimate (range from -1 to 1)
 r = 0 -> no correlation, r > 0 -> positive correlation
 r < 0 -> negative correlation
 r = 0.8 to 1 -> strong correlation
 r = 0.6; p= 0.001; 95% CI: 0.4, 0.8
 Does not differentiate between dependent and independent variables

Types of Correlation

Larson/Farber

Correlation - Example

 Is there a correlation between mother's age and baby's weight at birth?

Correlation - Example

 Is there a correlation between mother's age and baby's weight at birth?

	Correlations		
		Birth weight in	Mothers and
Birth weight in grams	Pearson Correlation	grains 1	.090
	Sig. (2-tailed)		.219
	N	189	189
Mothers age	Pearson Correlation	.090	1
	Sig. (2-tailed)	.219	
	Ν	189	189

Hours Spent Playing Video Games & GPA Inverse Correlation (r = -0.84; p=0.02)

Correlation is not equal to association Four sets of data with the same correlation coefficient r= 0.816 (Anscombe's quartet)

Case Study Head circumference and gestational age (weeks)

- A. Is there a correlation between head circumference and gestational age?
- B. What is the relationship between head circumference and gestational age?

Simple Linear Regression

- Technique that is used to explore the relationship between two variables (usually continuous)
- Y: response or dependent variable
- X: predictor or explanatory variable independent variable
- The population regression line is:

$$\mu_{y|x} = \alpha + \beta x.$$

- α intercept
- β slope (change in $\mu_y|_x$ per <u>one unit change</u> in x)
- The regression line that we fit depends on the sample
 - $Y = \alpha + \beta x + \varepsilon$ (error term)

$$\hat{y} = a + bx$$
. - where \hat{y} are predicted values

Assumptions of Linear Regression

- For a specific value of x, the distribution of y is normal with mean $\mu_{y|x}$ and SD $\sigma_{y|x}$
- Linear relationship
- Assumption of homoscedasticity
 - For any x, $\sigma_{y|x}$ is constant
- The outcomes y are independent
 - No correlation between Yi

The Method of Least Squares

- When fitting a regression line not all data points will be in the line
- <u>Residual or error</u> is defined:

 $e_i = y_i - \hat{y}_i.$

 Mathematical technique to fit the data in order to minimize the error or <u>residual sum of squares</u>

$$\sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2,$$

Hypothesis Testing Linear Regression

• Null hypothesis: No linear relationship between x and y

$$bope = 0 \qquad H_0: \beta = 0$$

- Alternative hypothesis: $B \neq 0$ (2-sided)
- To conduct the test we calculate t-statistics

- $S_{y|x}$ standard deviation from regression
- *t* follows a *t*-distribution with df=n-2

Head circumference and gestational age

Equation takes the form

y = 3.91 + 0.78 x How do you interpret 3.91 and 0.78?

What is the predicted value of Y for gestational age 30 weeks?

Hypothesis testing: t = 12.36; df=98 and p<0.001 How do you interpret this?

Evaluation of the Model

R²: Coefficient of Determination

Interpreted as proportion of the variability in y that is explained by linear regression of y on x $R^2 = 0.61$ for head circumference and gestational age

Residual Plots

Detect outliers Failure of assumption of homoscedascity Might suggest other patterns of association (maybe non-linear)

6 4 2 Residual 0 -2 -4 -6 -8 20 22 24 26 28 30 32 Fitted value of head circumference 0 Residual 0 0 0 0 0 0

Fitted value of y

Residual Plots

Another Example Length and gestational age (weeks)

					Numbe	r of obs	=	100						
Sourc	e SS	df	MS	5	F(1,9	8)	=	82.13						
Mode	1 575.73916	6 1	1 575.73916		1 575.73916		1 575.73916		1 575.73916		Prob	> F	=	0.0000
Residua	1 687.02084	1 98	7.0104	1674	R-square			0.4559						
Tota	1 1262.76	5 99	12.755	1515	Adj R-square		=	0.4504						
					Root	MSE	=	2.6477						
Variable	Coefficient	Std.	Error	t	P> t	[95% Cor	nf.	Interval]						
length	N Cable 18.1	and the	og hase	S. Marthall	126152.13	The Alternation								
gestage	0.9516035	0.1	050062	9.062	0.000	.7432221	L	1.159985						
_cons	9.3281740	3.0	451630	3.063	0.003	3.285149)	15.3712						

Multiple Linear Regression

What if we want to assess simultaneously the effect of two or more predictor variables on a continuous outcome?

Consider the following research question

- What is the association between baby's length and gestational age (week) as well as mother having hypertension (pre-eclampsia) during pregnancy?
- We can extend simple linear regression to accommodate two or more independent variables:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q + \epsilon$$

- Same assumptions apply also for multiple linear model
- Use the least square method to fit the model

Example: Multiple Linear Regression

What is the association between baby's length and gestational age (week) as well as mother having pre-eclampsia (toxemia)?

 $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$ (error term)

where $- x_1$ continuous variable (gestage)

- x₂ indicator/dummy variable (tox: yes=1, no=0)

Table 19.2 Stata output displaying the regression of length on gestational age and toxemia

Sour	се	SS		df		MS	Numb F(2)	er of obs	=	100
Model		619.2536	22	2	309	. 626811	Prob > F			46.67
Residu	sidual 643.506378 97 6.63408638 R-square		97 6.63408638 R-squar		=	0.4904				
Tot	al	1262.	76	99	12.	7551515	Adj H	R-square	=	0.4799
1		00.00	1	5	Show is	The second	Root	MSE	=	2.5757
length		Coef.	Sto	1. E	rr.	t	P> t	[95% Con	f.	Interval]
gestage	1	069883		1121	039	9.544	0.000	.847387	9	1.292378
tox	-1			6939	918	-2.561	0.012	-3.15476	3	3999997
_cons	6	.284326	З	3.191	824	1.969	0.052	05056	1	12 61001

Example: Multiple Linear Regression Indicator variable

 $\hat{y} = 6.28 + 1.07 x_1 - 1.78 x_2$

What is the equation for mothers with toxemia? $y = 6.28 + 1.07 x_1 - 1.78 (1)$

 $y = 4.50 + 1.07 x_1$

What is the equation for mothers without toxemia? $y = 6.28 + 1.07 x_1 - 1.78 (0)$

 $y = 6.28 + 1.07 x_1$

What is the predicted value of length (\hat{y}) for a baby born 32 weeks of age and having a mother with pre-eclampsia?

Linear Regression - Another Example

Is there a relationship between baby birth weight and maternal hypertension during pregnancy, after adjusting for age and smoking?

ANOVA ^a											Model	Summary ^b				
Model		Sum of Squares	df	Mean Square	F	Sig.							Cha	ange Statisti	CS	
1	Regression	6262001.401	3	2087333.800	4.123	.007 ^b	_			Adjusted R	Std. Error of	R Square				Sig. F
-	Residual	93655051.24	185	506243.520			Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Change
-	Total	99917052.65	188				1	.250ª	.063	.047	711.50792	.063	4.123	3	185	.00
a. Dependent variable. Dith weight in grants b. Predictors: (Constant), Smoking during pregnancy, History of hypertension, Mothers age							a. Pre b. De	pendent Va	riable: Birth w	king during pregr eight in grams	iancy, History of i	typenension, woln	ers age			
Star Unstandardized Coefficients Co								ed ts	t	5	Siq.	95.0% Co Lower Bo	onfiden ound	ce Inte Uppe	rval for er Boun	B
1	(Const	ant)		2824.666	239.6	03		_	11.7	89	.000	2351	.960	3	297.37	71
	History	of hypertension		-424.465	212.2	87	1	42	-1.9	99	.047	-843	.279		-5.65	51
	Mother	s age		10.933	9.8	04	.0	79	1.1	15	.266	-8	.409		30.27	76
	Smokii pregna	ng during Incy		-273.621	106.1	47	1	84	-2.5	78	.011	-483	8.035		-64.20)6

a. Dependent Variable: Birth weight in grams

Periodontal Changes in Children and Adolescents With Diabetes

Lalla et al.

DIABETES CARE, VOLUME 29, NUMBER 2, FEBRUARY 2006

Table 4—Estimated regression coefficients (and 95% CIs) from linear regression model* for number of affected teeth† among case subjects

	Regression coefficient (95% CI)	P value
Mean A1C	0.12 (-0.25 to 0.49)	0.51
Duration of diabetes	-0.02 (-0.20 to 0.17)	0.87
Proportion of bleeding sites‡	1.72 (-0.92 to 4.36)	0.20
12–18 years age-group	5.17 (3.80-6.54)	< 0.001
BMI	0.12 (0.02-0.23)	0.03

*Regression model also adjusted for sex, ethnicity, frequency of dental visits, and dental examiner. †Having at least one site with >2 mm of attachment loss. ‡Square root transformation performed to achieve a better fit.

Let's look at the distribution of outcome Nr of affected teeth Is this normally distributed?

Take Home Messages

- Correlations
 - Determines the relation between two variables
 - Doesn't differentiate the dependence
- Linear Regression
 - Used for continuous outcomes
 - Check assumptions of normality for outcome Y
 - Can accommodate both continuous and categorical independent variables
 - Goodness of Fit is indicated by R² and residual plots